Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)Abstract Four decades of seismic reflection, onshore‐offshore and ocean‐bottom seismic data are integrated to constrain a high‐resolution 3‐D P‐wave velocity model of the Hikurangi subduction zone. Our model shows wavespeeds in the offshore forearc to be 0.5–1 km/s higher in south Hikurangi than in the central and northern segments (VP ≤ 4.5 km/s). Correlation with onshore geology and seismic reflection data sets suggest wavespeed variability in the overthrusting plate reflects the spatial distribution of Late Jurassic basement terranes. The crustal backstop is 25–35 km from the deformation front in south Hikurangi, but this distance abruptly increases to ∼105 km near Cape Turnagain. This change in backstop position coincides with the southern extent of shallow slow‐slip, most of which occurs updip of the backstop along the central and northern margin. These relationships suggest the crustal backstop may impact the down‐dip extent of shallow conditional stability on the megathrust and imply a high likelihood of near/trench‐breaching rupture in south Hikurangi. North of Cape Turnagain, the more landward position of the backstop, in conjunction with a possible reduction in the depth of the brittle ductile transition, reduces the down‐dip width of frictional locking between the southern (∼100 km) and central Hikurangi margin by up‐to 50%. Abrupt transitions in overthrusting plate structure are resolved near Cook Strait, Gisborne and across the northern Raukumara Peninsula, and appear related to tectonic inheritance and the evolution of the Hikurangi margin. Extremely low forearc wavespeeds resolved north of Gisborne played a key role in producing long durations of long‐period earthquake ground motions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
ABSTRACT As part of the 2022 revision of the Aotearoa New Zealand National Seismic Hazard Model (NZ NSHM 2022), deformation models were constructed for the upper plate faults and subduction interfaces that impact ground-shaking hazard in New Zealand. These models provide the locations, geometries, and slip rates of the earthquake-producing faults in the NZ NSHM 2022. For upper plate faults, two deformation models were developed: a geologic model derived directly from the fault geometries and geologic slip rates in the NZ Community Fault Model version 1.0 (NZ CFM v.1.0); and a geodetic model that uses the same faults and fault geometries and derives fault slip-deficit rates by inverting geodetic strain rates for back slip on those specified faults. The two upper plate deformation models have similar total moment rates, but the geodetic model has higher slip rates on low-slip-rate faults, and the geologic model has higher slip rates on higher-slip-rate faults. Two deformation models are developed for the Hikurangi–Kermadec subduction interface. The Hikurangi–Kermadec geometry is a linear blend of the previously published interface models. Slip-deficit rates on the Hikurangi portion of the deformation model are updated from the previously published block models, and two end member models are developed to represent the alternate hypotheses that the interface is either frictionally locked or creeping at the trench. The locking state in the Kermadec portion is less well constrained, and a single slip-deficit rate model is developed based on plate convergence rate and coupling considerations. This single Kermadec realization is blended with each of the two Hikurangi slip-deficit rate models to yield two overall Hikurangi–Kermadec deformation models. The Puysegur subduction interface deformation model is based on geometry taken directly from the NZ CFM v.1.0, and a slip-deficit rate derived from published geodetic plate convergence rate and interface coupling estimates.more » « less
-
Abstract The 2022 revision of Aotearoa New Zealand National Seismic Hazard Model (NZ NSHM 2022) has involved significant revision of all datasets and model components. In this article, we present a subset of many results from the model as well as an overview of the governance, scientific, and review processes followed by the NZ NSHM team. The calculated hazard from the NZ NSHM 2022 has increased for most of New Zealand when compared with the previous models. The NZ NSHM 2022 models and results are available online.more » « less
-
Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin.more » « less
An official website of the United States government
